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It is found that the metal-semiconductor transition in the I-T TaS2 is suppressed linearly by 
compression up to ~15 kbar with dTo/dP = - (3.0±0.2) K/kbar. A two-band model with a small but 
temperature- and pressure-dependent overlap is proposed. 

The transition metal dichalcogenides form two 
distinct classes of compounds, of which one ex­
hibits a layered structure *. These layered com­
pounds possess different crystal symmetries and 
diversified electronic properties ranging from 
metals through semiconductors to insulators. The 
interest in these dichalcogenides which are two or 
quasi-two dimensional systems has recently 
grown immensely [2]. The 1-T phase of TaS2 is 
known to be one of the most unusual cases among 
this system from the standpoint of its crystal 
structure and its nonmetallic nature at room tem­
perature. However, the unique nature was not un­
veiled until only recently when Thompson et al. 
[3] observed three first-order phase transitions 
at 348, 315 and l80K respectively. The first cor­
responds to a transition from metal to semicon­
ductor with decreasing temperature T and the 
last two from semiconductor to semiconductor. 
The metal-semiconductor transition is the first 
of this kind observed in layered compounds. The 
failure [3] to detect any crystallographic change 
with the metal-semiconductor transition by x­
ray and the inadequacy of the empirical band 
models [1] to account for its semiconductivity 
are very puzzling. In addition, no magnetic long­
range-order near this transition was found by 
Menth et al. [4]. Hence a pressure study on the 
metal-semiconductor transition in 1-T TaS2 is 
particularly interesting. 

We have measured the transition temperature 
To under pressure P above room temperature. 

* For a comprehensive review, see [1] 
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Fig. 1. The variation of To as a function of P. d To/dP 
given in the text was the mean value for both heating 
and cooling. The insert shows the R-variation with P 
at 298K. The bars represent the width of the transition 

and the uncertainty in pressure. 

To was found to decrease linearly with dT o/dP = 
-(3.0 ± 0.2) K/kbar throughout the experimental 
range. The present results combined with those 
in [2,3] lead us to suggest a two-band model 
with a small but temperature- and pressure­
sensitive overlap in order to explain the metal­
semiconductor transition. 

The investigation was carried out on single 
crystals of 1-T TaS2 which has To = 350K at 
1 atm slightly higher than that observed by 
Thompson et al. [3] . The metal-semiconductor 
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transition was determined by ml asuring the re­
sistance along the a-axis using a four lead tech­
nique. The size of the sample was 4 x 1 x O.2 mm3. 
Pressure was generated between a pair of 
Bridgeman anvils with Agel as the pressure me­
dium and was determined by a gauge calibrated 
against the 25.4 kbar Bi-transition. Constant P 
was maintained manually both on heating and 
cooling. The rates of T-change were kept at a 
minimum to reduce thermal hysteresis which in­
creased from 1 to 6K with P. The transition 
width also increased with P from 1.5 to 6K. This 
may be caused by the increase of pressure in­
homogeneity . 

The results of To versus P are shown in fig.1 
for both heating and cooling. The linearity be­
tween To and P in the present P-range by no 
means should be expected at a much higher P if 
the transition remains first order. However, it 
does set an upper limit on the critical pressure 
~ 118 kbar to retain the M-phase at O°K. 
p':>!. 18kbar is sufficient to stabilize the M-phase 
at 298K. To further demonstrate this, we mea­
sured the resistance R as a function of P at 
298K and the results are shown in the insert. 
The small step at slightly higher P following the 
main transition may be caused byoff-stoichiom­
etric effect which also appeared at 1 atm in some 
of the samples. 

The slope of the T o-P curve d To/dP, the vol­
ume change t:. V and the entropy change t:.S asso­
ciated with a first-order transition are related 
by Clausius-Clapeyron equation: d To/dP = t:. V / t:.S. 
Using our value dTo/ dP = -(3.0±0.2 ) K/kbar and 
t:.S = 0.09 cal/ mole· K given in [3]' we obtained 
t:. V = -(3.2 ± 0.4) x 10-4 cm3/mole. This indicates 
that only ~3 x 10-2% volume increase occurs at 
the metal-semiconductor transition in 1-T TaS2 
which is consistent with the previous failure to 
observe a volume discontinuity by X-ray [3]. 

Various models ** have been proposed to ex-

** See the review article hy Mott and Zinamon [5]. 
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plain the metal-semiconductor transition in dif­
ferent materials. Mott [6] suggested that the S­
phase can arise from the localization of electrons 
due to Coulomb interaction. However, no local 
moment was observed in the S-phase of I-T Ta~ 
[4]. We therefore propose a two- (or more) band 
model to explain the metal-semiconductor tran­
sition in 1-T TaS2. In the M-phase the overlap is 
small at 1 atm and decreases with decreasing T. 
The metal-semiconductor transition may be 
driven by the strong correlation between car­
riers. At high P the overlap increases and so 
the M-phase is stable to lower T. The associ­
ated volume change deduced from the present 
study is in agreement with such a proposition. 
The finding by Thompson et al. [3] that the S­
phase has lower entropy and that two-band con­
duction is involved in this compound are also 
compatible with the present model. In view of 
the indication of a super lattice in the electron 
microscope diffraction pattern [1], the possibil­
ity of a long-range-order effect creating an en­
ergy gap can not be ruled out. In this alternative 
model , the small crystal distortion may just be 
the consequence of the appearance of long-range­
order. It is clear that detailed work is needed to 
elucidate the nature of this transition. 
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